ALD-Based NbTiN studies for SIS R&D

Isabel González Díaz-Palacio on behalf of the SRF R&D Team

TESLA Technology Collaboration Meeting (Virtual)

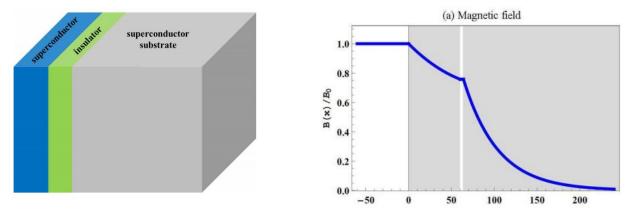
19th-21st January 2021

TESLA Technology Collaboration 2021

Outline

- Superconductor- Insulator- Superconductor multistructures motivation and possible materials
- Atomic Layer Deposition: Thermal and Plasma
- Plasma Enhanced Atomic Layer Deposition: NbTiN thin films
- Process Optimization of PEALD NbTiN
- Effect of thermal treatment on NbTiN thin films

Motivation: S-I-S Multilayers

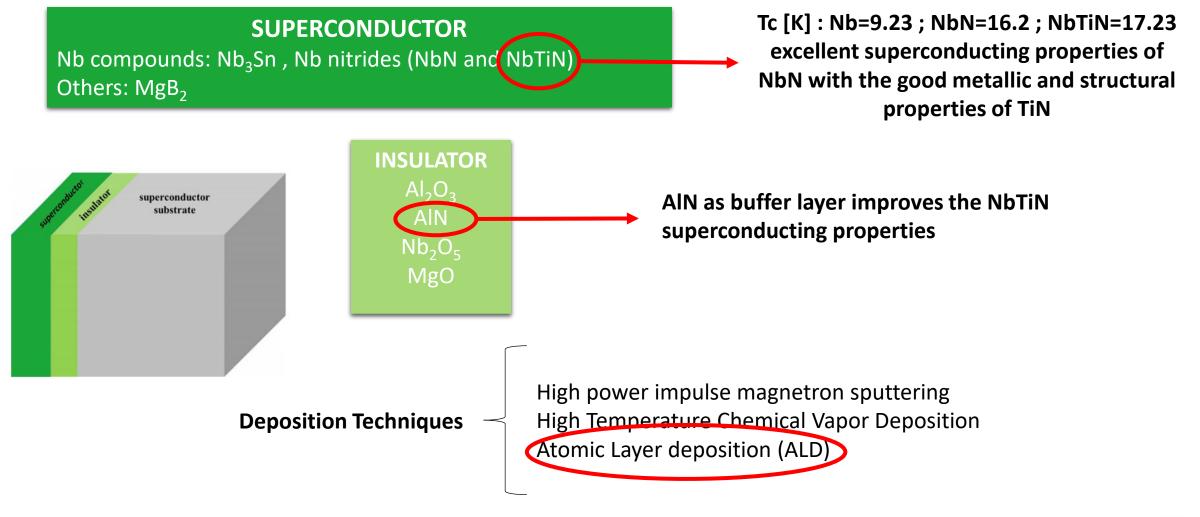

New structure proposed by A. Gurevich [1]

The idea is to coat the SRF cavities with alternating superconducting and insulating layers.

Requirements for the superconductor:

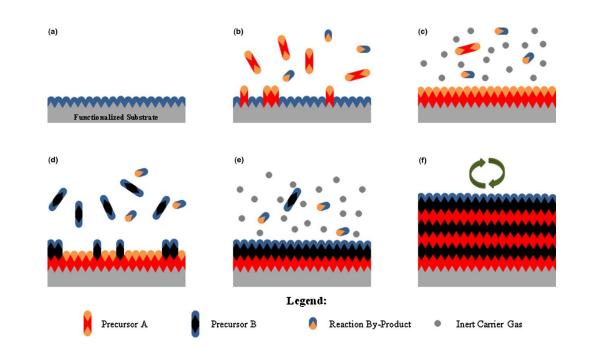
- Thin film thickness << λ_{L} - Higher Tc and Δ -Lower ρ_n

These multilayers provide magnetic screening of the bulk cavity and lower surface resistance which allows to increase the accelerating field and reduce the losses.


T.Kubo 2017 Supercond. Sci. Technol. [2]

Isabel González Díaz-Palacio, 20th January, TTC 2021

Motivation: S-I-S Multilayers



Atomic layer deposition (ALD)

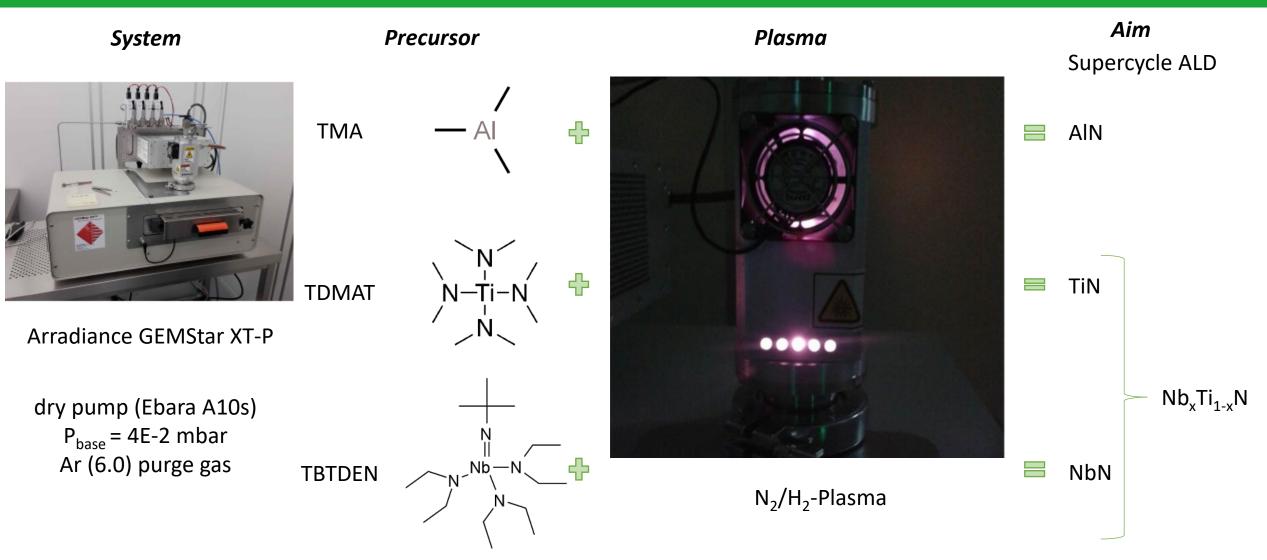
ALD is a sequential technique based on the self-limiting reactions between gases and solids

- Exceptional conformality (also on high-aspect ratio structures)
- ✓ Precise thickness control (constant growth per cycle (GPC))
- ✓ Homogeneity (pinhole-free)
- ✓ Small film roughness
- x Slow process
- Not all stoichiometries are possible – correct precursors necessary

Thermal ALD vs Plasma Enhanced ALD (PEALD)

Thermal ALD

- Metal chloride precursors (NbCl₅ and TiCl₄) can contaminate the deposited film with chlorine
- NH₃ as nitrogen source is often insufficient as reductant power to obtain stoichiometric metal nitrides
- Requires high ALD temperaturas (>400 °C)


Plasma Enhanced ALD

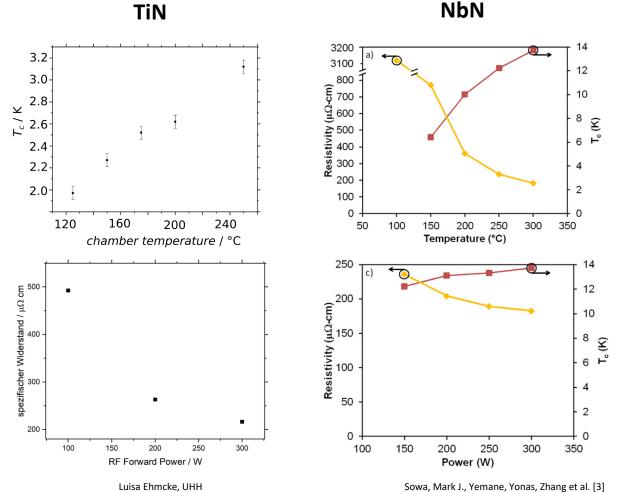
- Highly reactive radicals produced by a plasma source act as a coreactant
- Low ALD deposition temperatures (<400 °C)</p>
- Metallorganic precursors

Supercycle ALD Approach for AlN Nb_xTi_{1-x}N

Isabel González Díaz-Palacio, 20th January, TTC 2021

Tuning the superconducting properties by varying ratio of NbN to TiN

Isabel González Díaz-Palacio, 20th January, TTC 2021

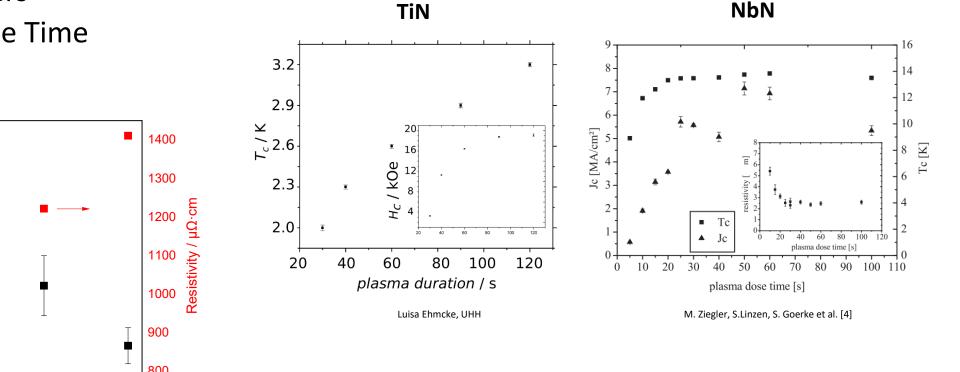

Universität Hamburg

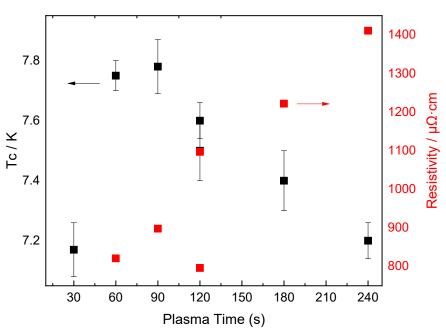
Process Optimization of individual binary processes

The deposition process has been optimized in order to improve the superconducting properties of NbTiN thin films TiN NbN

- Deposition Temperature
 - \rightarrow @250°C Limitation of process

- Plasma Parameters
 - 1) RF Forward Power
 - ightarrow @300W Limitation of setup

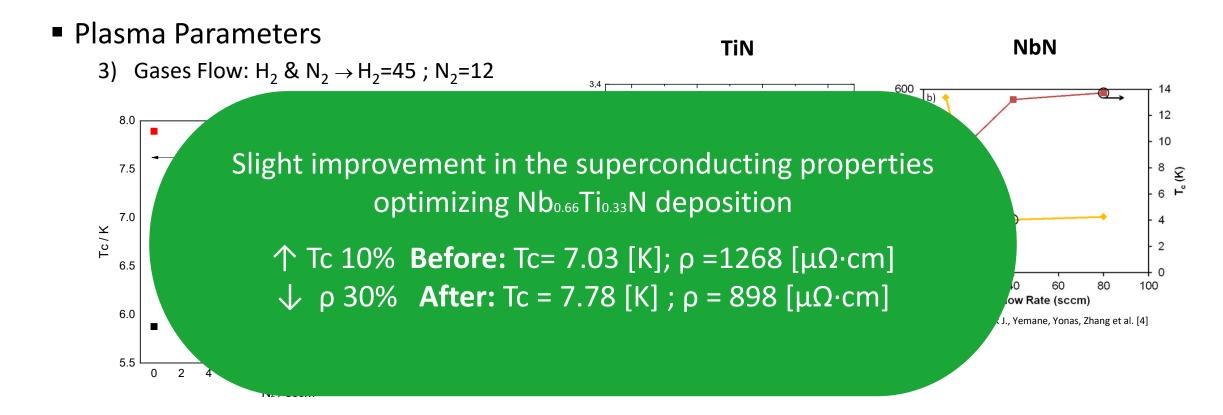




Isabel González Díaz-Palacio, 20th January, TTC 2021

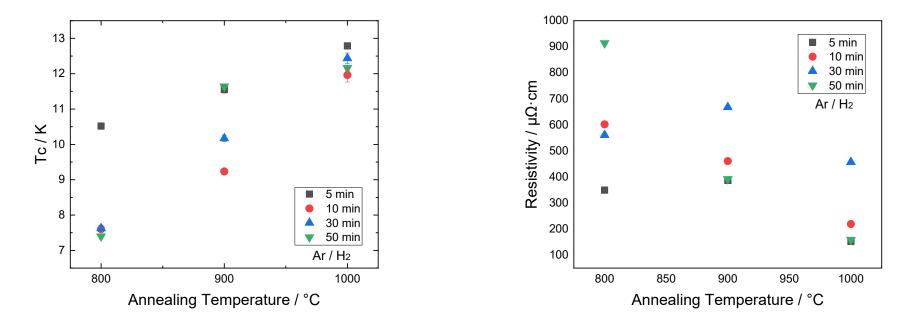
Process Optimization of individual binary processes

- Plasma Parameters
 - 2) Plasma Dose Time



Process Optimization of individual binary processes

Pressure: decrease the base pressure improves the film quality

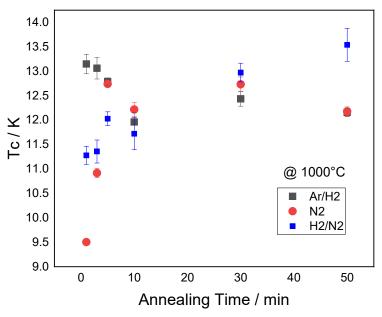


11

Rapid Thermal Annealing

Influence of temperature and time of the annealing process in the transport properties of the Nb_{0.66}Ti_{0.33}N films

Tc and resistivity were improved by RTA.



12

Rapid Thermal Annealing

Influence of the gas atmosphere in the transport properties the Nb0.66 Ti0.33 N films

- Different annealing atmospheres :
 - 1. Ar/H₂ mixture (95% of Ar and 5% of H₂)
 - 2. N2
 - 3. N₂/H₂ mixture (85% of N₂ and 15% of H₂)

Maximum Tc reached Tc= 13,5 K

Investigation different RTA atmospheres

5 min	Resistivity / μΩ·cm	Тс		
Ar/H2	152	13,05		
N2	198	12,7		
H2(15%)/N2(85%)	186	12,03		
H2(33,3%)/N2(66,6%)	302	11		

1. After the first RTA, a 2nd thermal treatment (without vacuum break) in pure N₂ atmosphere has been performed at 1000°C. The results showed that Tc has been increased. The best result is **Tc= 13,93 K**; $\rho = 132 \mu\Omega \cdot cm$

Further studies are needed to establish best recipe

Summary + Next Steps

WORK UNTIL NOW

- ✓ PE-ALD NbTiN deposition process has been optimized for T_c and resistivity, still insufficient.
- ✓ Post-deposition thermal annealing has been performed to investigate the effect on the films and different temperatures, annealing times and gas atmospheres have been studied.
 As deposited Tc=7.78 K → After RTA Tc=13.93K

NEXT STEPS

- Lattice characterization, using XRR/XRD/EBSD/PALS. The aim is to fully understand the effect of the RTA
- Analyze the H₂ concentration using EMGA
- SRF measurements to obtain H_{c1} and the superconducting gap Δ

References

[1]Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)

[2]Takayuki Kubo 2017 Supercond. Sci. Technol. 30 023001

[3] Sowa, Mark J., Yemane, Yonas, Zhang et al., Plasma-enhanced atomic layer deposition of superconducting niobium nitride, Journal of Vacuum Science & Technology A 35, 01B143 (2017)

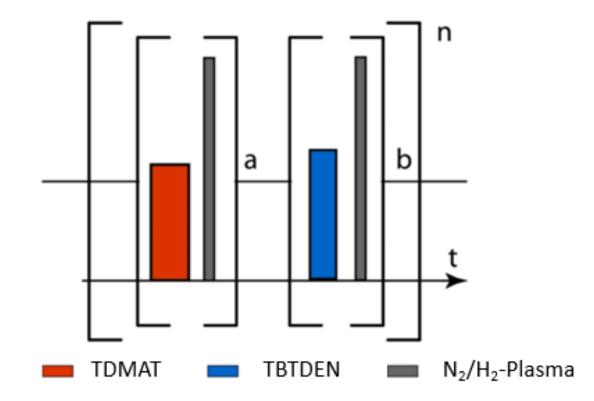
[4] M. Ziegler, S.Linzen, S. Goerke et al., Effects of Plasma Parameter on Morphological and Electrical Properties of Superconducting Nb-N Deposited by MO-PEALD, IEEE Transactions on Applied Superconductivity (Volume: 27, Issue: 7, Oct. 2017)

15

THANK YOU FOR YOUR ATTENTION!

Feel free to contact via: igonzale@physnet.uni-hamburg.de

Backup


Material	Т _с [К]	ρ _n (μΩc m)	H _c (0) [mT]	H _{c1} (0) [T]	H _{c2} (0) [T]	Н _{зн} [T]	λ(0) [nm]	∆ [meV]	ξ [nm]	Туре
Nb	9.23	2	200	0.17	0.28	0.219	40	1.5	28	Ш
Pb	7.2		80	N/A	N/A		48			I.
NDN	16.2	70	230	0.02	15	0.214	200- 350	2.6	<5	II, B1 comp.
NbTiN	17.3	35		0.03			150- 200		<5	II, B1 comp.
Nb ₃ Sn	18	20	540	0.05	30	0.425	80-100	3.1	<5	II, A15
V ₃ Si	17	4	720	0.072	24.5		179	2.5	<5	II, A15
Mo ₃ Re	15	10-30	430	0.03	3.5	0.17	140			II, A15
MgB ₂	40	0.1-10	430	0.03	3.5-60	0.17	140	2.3/7. 2	2.3/7.2	II- 2 gaps
2H-NbSe ₂	7.1	68	120	0.013	2.7-15	0.095	100- 160		8-10	II-2gaps
YBCO	93		1400	0.01	100	1.05	150	20	0.03/2	d-wave
Pnictides	30- 55		500-900	0.03	>100	0.756	200	10-20	2	s/d wave

Supercycle ALD Approach for Nb_xTi_{1-x}N

Aim: Tuning the superconducting properties of the deposited thin by varying ratio of NbN to TiN

